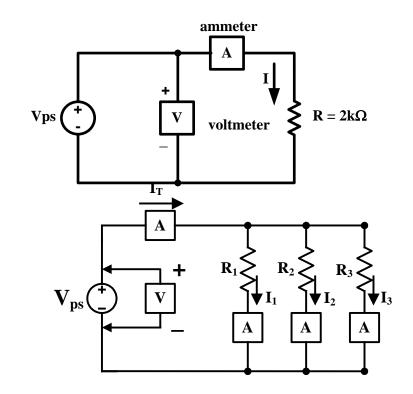
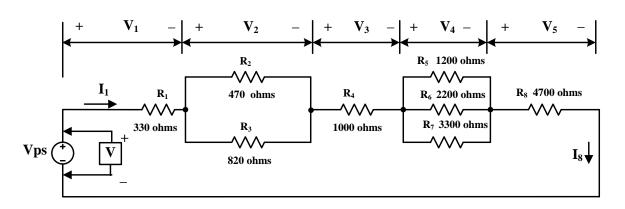
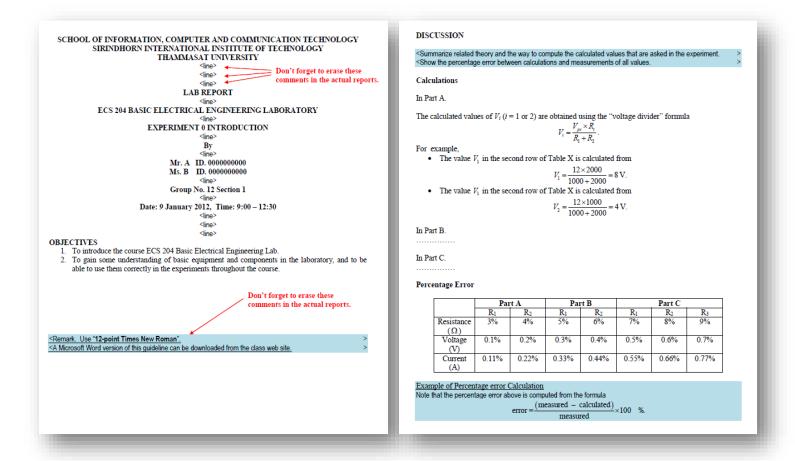

Basic Elec. Engr. Lab ECS 204


Asst. Prof. Dr. Prapun Suksompong


prapun@siit.tu.ac.th

Lab 1



Lab Report

- Submitted in group (i.e., 1 copy per group).
 - Submit at the beginning of the next lab
- It must be neatly PRINTED on clean A4 papers.
- Units are important.
- For student who **copies** *any part* of the report, a **zero** score will be given to *the whole* corresponding experiment.

Guideline/template

• Can download guideline/template from the class web site. (http://www2.siit.tu.ac.th/prapun/ecs204/)

Contents of the Report (1)

- Cover page and Objectives (3 pt)
- Procedure (10 pt)
 - Summarize what you need to do for each part of the lab
 - Do not copy the whole procedure part of the manual into this section.
 - Include photos of the circuits that you build.
 - A rule of thumb is to have photos that match all the figures given in the procedure parts of the manual.
- In-lab original results (with TA signatures) (10 pt)
 - If you work in pair, then this means two sets of results.
 - This will be the only section of the report that is handwritten.
- Results (printed) (10 pt)
 - Same as the previous part.
 - Typed / computer generated (plots, graphs, diagrams, schematics)

Contents of the Report (2)

- Discussion (10 pt)
 - Related theories
 - Show calculation
 - Errors, in percentage, reflecting the difference between the experimental results and the theoretical calculations for each part of the experiment.
- Conclusions (5 pt)
 - Summarize what you have done/accomplished.
 - Results agree with theoretical prediction?
 - Suggest source of error.
 - Demonstrate
 - your understanding of the experiments according to the objectives
 - the knowledge gained from the experiment.
 - Put some thought into this part!
- Answers to questions in the manual. (7 pt)

Lab 1

- Complete tables on page 11.
- Ask the TA to verify your results when you finish each part.
 - Do not wait until the end.

TABLE 1-1: Verification of Ohm's law

	R =					
V (volts)	10	13	20	21		
I (amps)						
Calculated I (amps)						
` • ′			TA Signat	1170.		

TABLE 1-2: Voltage-divider circuit

R ₁ =	R ₂ =					
	v_{ps}	v_1	V ₂			
Measured value						
Calculated value	N/A					

TABLE 1-3: Current-divider circuit

R ₁ =	R ₂ =	R ₃ =		_	
	Vps	Il	12	I3	IT
Measured value					
Calculated value	N/A				

TA Signature:

TA Signature:

TABLE 1-4: Verification of Kirchhoff's laws

 $V_{PS} =$ (calculated in part D.4) (measured). $V_{PS} =$ $R_1 =$ Measured value Calculated value V_4 V_5 v_1 V_3 V5 $R_3 =$ $R_i =$ $R_8 =$ Measured value Calculated value I_2 Ι3 15 16 **I**7 Ιg $I_2 + I_3$ I5+I6+I7 $R_0 =$

TA Signature:

Tips

- Never put the DMM in ammeter (current measuring) mode directly across the two terminals of the power supply.
 - This will blow the fuse inside the DMM.
 - You can use "continuity testing" to check for a blown fuse.
- Record "3.98" when the DMM displays "3.98".
- Record "4.00" (not simply 4) when the DMM displays "4.00".
- When you work on each of the experiments, carefully follow the steps provided.